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1    Introduction 

Biological networks are now the starting point of many studies for understanding and curing human dis-
eases. A protein–protein interaction (PPI) involves two or more proteins binding together, often to carry 
out their biological function. Many of the most important molecular processes in the cell, such as DNA 
replication, are carried out by molecular machines that are built from a large number of protein compo-
nents organised by their PPIs. A set of PPIs occurring at the same time and location of the cell is known 
as a complex of proteins. A protein-protein interaction network (PPIN) is a collection of PPIs, often de-
posited in online databases. PPINs may complement other datasets, such as protein structural infor-
mation, which may lead to understanding the different subparts that contribute to the function of a whole 
biological system (Bapat et al., 2010). Known molecular pathways can be embedded in PPINs to derive 
new knowledge, such as on spatio-temporal dynamics (Schmid & McMahon, 2007; Srinivasan et al., 
2007). Understanding PPINs allows one to target them with drugs (Pujol et al., 2009). PPINs are also 
playing a role in the emerging field of synthetic biology that promises to create biological systems with 
new properties, and modules of networks are available (http://parts.mit.edu) (Russell & Aloy, 2008; 
Aloy, 2007). A major issue in using PPINs in practice involves dealing with errors in the form of missing 
interactions and false signals. 

 
2    Experimental Methods for Extracting PPINs and Applications 
 

The yeast two-hybrid (Y2H) system and affinity purification followed by mass spectrometry (AP-MS) 
are two commonly used experimental methods for detecting interacting proteins. The Y2H system identi-
fies direct interactions between pairs of proteins that physically interact with each other, represented as 
binary relationships. Large-scale experiments involve making yeast colony arrays; each yeast colony ex-
presses a defined pair of bait and prey proteins that are scored for activity in an automated manner, where 
high activity indicates interaction. AP-MS detects presence of a protein in a complex, but may not identi-
fy the direct interactions between proteins within a complex (Yu et al., 2008). In an AP-MS experiment, 
a tagged protein is expressed in yeast and then pulled from a cell extract, along with any proteins associ-
ated with it. The pull-down is done by co-immunoprecipitation or by tandem affinity purification and the 
set of pulled-down proteins is identified by MS. Similar to Y2H, the tagged protein in AP-MS may be 
called the bait and the pulled-down proteins the prey. Figure 1 compares the information on protein com-
plexes given by Y2H and AP-MS experiments (Gentleman & Huber, 2007). Other methods exist for de-
tecting both binary interactions and presence in the same complex, but an issue with all technologies is 
how to routinely scale them up for high-throughput assays (Tarassov et al., 2008; Venkatesan et al., 
2009; Cusick et al., 2009; Gentleman & Huber, 2007). 

These procedures have been systematically applied to large sets of yeast proteins. Tong et al. 
combined Y2H experiments to generate two networks. Then they did a computational analysis to identify 
highly likely PPIs common to both networks. They predicted yeast PPIs mediated by a specific domain, 
and the interactions were validated in vivo (Tong et al., 2002). Giot et al. (2003) produced a PPIN of the 
fly D. melanogaster. First they produced a draft map of 7048 proteins and 20,405 interactions. A compu-
tational method of rating two-hybrid interaction confidence was developed to refine the draft to a higher 

confidence map of 4679 proteins and 4780 interactions. More recently, the groups of Krogan et al. and 
Gavin et al. both derived high-throughput PPI networks on yeast (Krogan et al., 2006; Gavin et al.,  
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Figure 1: The representation of protein complexes in Y2H and AP-MS data. (a) The actual in-
volvement of protein B in three different multiprotein complexes, numbered 1, 2, 3. In each com-
plex B interacts with different proteins. (b) Protein B is used as a bait in a hypothetical AP-MS 
experiment. If there are no false positives and false negatives, B will appear to have a connection 
to all proteins, but the individual complexes will be indistinguishable. (c) Protein B is used as a 
bait in a hypothetical Y2H experiment with a genome-wide set of prey proteins. If there are no 
false positives and false negatives, B will be pulled out with its direct interaction partners only 
(adapted from Gentleman and Huber 2007). (Gentleman & Huber, 2007) 

2006), using AP-MS and Y2H respectively. There was low overlap between the two networks. Simonis 
et al. presented a C. elegans PPIN, by testing a matrix of proteins, with a dimension of ~10,000x~10,000, 
using a high throughput Y2H system. The worm (C. elegans) has ~10,000 open reading frames (ORFs). 
This interactome consists of 1,816 PPIs between 1,496 proteins. By integrating with previous worm PPIs 
they estimated the size of the worm interactome at ~116,000 PPIs (Simonis et al., 2009). 

A major problem in dealing with PPINs is the high noise rate in high-throughput experiments. 
False positives in a network are erroneous interactions, while false negatives are missing interactions, 
which may limit the reliability of a PPI network. To evaluate the correctness and reliability of high 
throughput PPI networks, we used known complexes from the MIPS database. We compared the over-
laps of two high-throughput PPI networks mentioned above, by Gavin et al. and Krogan et al., with the 
MIPS protein complexes dataset (Mewes et al., 2006). Table 1 shows full results for the overlaps of 
Gavin and Krogan networks to the MIPS complexes. For protein pairs that appear in both PPINs and 
MIPS complexes, we evaluated the number of overlapping edges PPIN ∩ complexes. We found Gavin06 
∩ MIPS has just 305 overlapping edges, Krogan06 ∩ MIPS has 359 overlapping edges. 
Literature curation strategies analyze thousands of small-scale experiments from the large online biomed-
ical literature (e.g., PubMed) to identify individual PPIs. The analysis is usually done automatically, 
though manual curation may also contribute. The individual literature-curated PPIs are then collected into 
a large PPI network.  Such literature-curated PPINs generally have fewer errors than PPINs from high-
throughput screens with a high error rate. Literature-curated PPINs that represent an accumulation of 
many small-scale studies may help to correct errors in high-throughput screens, which aim to make dis-
coveries without prior knowledge. While literature-curated PPINs are complementary to high- 
 
 



Network 
Edge overlap with MIPS 

|Enetwork ∩ EMIPS| 
Edges in network but not in MIPS 

|Enetwork - EMIPS| 
Gavin 305 3989 

Krogan 359 2225 

Table 1: Overlap of high-throughput PPI networks (Gavin and Krogan) with known com-
plexes from the MIPS yeast database. Only those edges were considered where both proteins 
were present in the PPI network and in MIPS. Symbols denote: E, edges; |·|, set cardinality; 
∩, intersection; -, set difference. 

throughput screens, they are an unlikely source of new biological knowledge since they are based on 
what was investigated before (Venkatesan et al., 2009; Cusick et al., 2009). 

The potential of PPI networks in medical applications was demonstrated by finding subnetwork 
markers in a human PPI network, which provide risk prediction of metastasis and classify breast cancer 
into subtypes (Soon et al., 2010). Changes in the organization of the human PPI network was shown to 
be a useful indicator for breast cancer prognosis and predicting patient outcome (Wu et al., 2010; Taylor 
et al., 2009). A PPIN extended with additional datatypes, such as gene-gene coexpression networks, was 
applied to two glioblastoma (GBM) datasets and candidate oncogenes were projected onto this network. 
The majorities of GBM candidate oncogenes formed a cluster and were closer than expected by chance. 
Similar patterns including subnetwork markers for metastasis were found in breast, colorectal and pan-
creatic cancers (Pujol et al., 2009; Wu et al., 2010; Cerami et al., 2010; van den Akker et al., 2011). All 
of these medical applications assume reliable PPI networks with a low error rate. Dealing with noise in 
high-throughput experiments remains a major challenge. 

3    What Causes Proteins to Interact? 

Often a protein's physical interaction with its partner is mediated by a modular part of the protein’s sur-
face, called a structural domain (Jothi et al., 2006). Unraveling molecular details of PPIs requires under-
standing how proteins interact at the structural level (Pawson & Nash, 2003). There are cases where a 
domain from one protein interacts (through physical contacts or chemical bonds) with two or more do-
mains from another protein, which almost always co-exist (Hesselberth et al., 2006). Sometimes, the co-
occurring domains are fused together to form a single domain in a reference organism. A pair of interact-
ing domains (or proteins) is more likely to share similar functional annotations from the online literature 
than any random domain pair (Kamburov et al., 2007).  

Although relatively simple in isolation, PPIs can be regulated in a dynamic fashion via domain in-
teractions, providing a measuring device to monitor cellular activity. In the PPI pathways that control 
cellular behavior, for example, catalytic domains frequently induce post-translational protein modifica-
tions (such as phosphorylation) that are then recognized by interaction domains (Pawson & Scott, 1997; 
Pawson, 2003).  

Though many PPIs are involved in specific functions and cellular locations, a range of weak inter-
actions are relatively unspecific and often without a meaning. As long as unspecific interactions procure 
no disadvantage to the organism, they could be tolerated through evolution. Morrison et al. proposed a 
model where PPIs are explained by an underlying interaction between complementary structural do-



mains; they called this the lock-and-key model (Alberts et al., 2002; Lodish et al., 2000; Morrison et al., 
2006). 

4    The Importance of Hubs in PPINs 

In a PPI network, proteins are represented as nodes. Some nodes interact with many more partners than 
average; these proteins are called hubs (Albert, 2005). The loss of hubs may cause the breakdown of the 
PPIN into isolated clusters (Barabasi & Oltvai, 2004). A consequence of highly-connected hub proteins is 
a PPIN’s robustness to random errors, coupled with a high fragility against the removal of the most con-
nected hub proteins. A famous example of a hub protein is the tumor-suppressor p53, which is mutated 
and inactivated in a high percentage of human tumor types (Jeong et al, 2001). The likelihood that a gene 
is essential (lethal) correlates with the number of PPIs its protein product has. 

Since proteins can interact only if they are at the same location at the same time, protein localiza-
tion plays an important role in PPINs. Vidal et al. proposed a well-known model where hubs are distin-
guished into party hubs and date hubs. While party hubs bind all of their interaction partners simultane-
ously, date hubs bind them at different times or locations (Han et al., 2004). While party hubs function 
inside modules, date hubs have an organizational role, connecting processes or modules to one another. 
The distinction of hubs into party hubs and date hubs has been questioned in the literature. The original 
proponents confirmed these global properties on literature-curated yeast PPINs (Bertin et al., 2007). 
However, the opposing side argued that the PPINs used are too small and incomplete (Batada et al., 
2006; Batada et al., 2007).  

Ekman et al. (2006) and Singh et al. (2007) tried to find the domain structural basis for the distinc-
tion between party and date hubs. They found that date hubs are enriched with long disordered regions, 
which are important for flexible binding. There is an over-representation of multi-domain proteins among 
the hubs. Hub proteins, especially party hubs, appear to be more conserved in ancient species.  

Over the past 15 years, examples of protein structures have emerged showing that proteins exist in 
an intrinsically disordered state and function without a stable folded structure; in many cases, lack of 
structure is actually required for biological function. Haynes et al. (2006) argued that intrinsic structural 
disorder is a common characteristic of hub proteins, since they are more disordered than proteins with 
one interaction partner. They propose that intrinsic disorder may serve as a determinant of protein inter-
actions for hub proteins in human, yeast, fly and worm PPINs.  

Uversky et al. proposed three general ways that intrinsically disordered proteins contribute to the 
high level of hub connectivity. First, intrinsic disorder can serve as the structural basis for hub protein 
promiscuity. Secondly, intrinsically disordered proteins can bind to structured hub proteins. Thirdly, in-
trinsic disorder can provide flexible linkers between functional domains with the linkers enabling mecha-
nisms that facilitate binding diversity (Dunker et al., 2005). 

5    Evolutionary Conservation of PPIs 

Several studies have been conducted to examine the extent of conservation between the PPIs in different 
organisms. Many signaling circuits embedded in PPI networks are conserved over evolution across spe-
cies. Sharan et al. found 71 PPIN regions that are conserved across C. elegans, D. melanogaster and yeast 



S. cerevisiae. These conserved PPIN regions can be useful for predicting new interactions or unknown 
protein functions (Sharan & Ideker et al., 2005; Sharan et al., 2005). The highly connected hub proteins 
tend to be evolutionarily conserved across species, even in the context of noise in the underlying PPINs 
(Wuchty et al., 2006). 

As mentioned above, there are at least two types of interacting surfaces in proteins. Domain-
domain interactions are more prevalent in stable protein complexes, whereas domain-disorder interac-
tions are more transient. Domain-disorder interactions evolve much faster than domain-domain interac-
tions. Investigations of intrinsic disorder in proteins showed a considerable proportion of poorly con-
served domain-disorder interactions, indicating that the proportion of non-conserved PPIs across species 
is substantial. The proportion of PPIs that are of the domain-disorder type versus the domain-domain type 
is not known for any species (Tarassov et al., 2008; Venkatesan et al., 2009; Cusick et al., 2009). 

6    Reliability and Coverage of PPINs 

Owing to the high error rate of experimental methods, low accuracy and falsely detected interactions re-
main one of the main problems in dealing with PPINs (Rinner et al., 2007). Huang et al. estimated that 
for yeast, worm and fly screens, the overall false discovery rates (FDRs) are 9.9%, 13.2% and 17.0% and 
the false negative rates (FNRs) are 51%, 42% and 28% (Huang & Bader, 2009). Hart et al. made more 
pessimistic estimates that owing to a high false positive rate, current PPINs are only 50% complete for 
yeast and 10% complete for human (Hart et al., 2006).  

The reported low coverage and high error rates in PPINs have contributed to significant question-
ing of the experimental methods used for PPI detection. Vidal et al. concluded that both Y2H and AP-MS 
data are of high quality, but different reasons cause errors in each datatype. Y2H and AP-MS provide 
complementary information about a PPIN and both are vital to get a complete picture. They calculated 
the edge-betweenness for each PPI in a merged network of all available interactions, measuring the num-
ber of shortest paths between all protein pairs that traverse a given edge. The higher edge betweenness of 
PPIs from Y2H shows the tendency of Y2H to detect key PPIs, representing connections between com-
plexes and pathways, more often than AP-MS. They developed an empirical mapping framework that 
produced a high-quality Y2H network covering ~20% of all yeast PPIs (Yu et al., 2008); they applied 
this framework to map the estimated ~130,000 human PPIs (Venkatesan et al, 2009). Additionally, Vidal 
et al. concluded that PPIs manually curated from the literature are error prone, as indicated by an ex-
tremely low overlap of different curation databases. Occasionally, curator error is responsible for a low 
reliability of literature curation. However, errors are also due to gene name confusion and the difficulty 
of extracting accurate information from a long free-text document (Cusick et al., 2009). 

PPINs from different high-throughput experiments have low overlap. Gentleman et al. argued that 
the low overlap of datasets is due to low coverage of different methods rather than false positives. The 
real issues in dealing with low coverage of PPINs involve comparing the methods, detecting noise, inter-
preting and integrating the data (Gentleman & Huber 2007). Hoffmann and Valencia investigated PPINs 
resulting from different methods. They argued that while a pairwise comparison of interactions does not 
reveal similarities between different methods, comparing the connectivities of individual proteins reveals 
a common tendency between methods manifested as global properties of the PPINs (Hoffmann & Valen-
cia, 2003).  



Two approaches for interpreting the results of bait-prey studies are the spoke model vs. the matrix 
model. The spoke model connects only the bait protein with associated hit proteins, minimizing the false 
positive PPIs. A matrix model connects all proteins pulled with a bait protein to one another (as a clique) 
resulting in more false positives, but also more true positive PPIs. Bader and Hogue showed that a spoke 
model is three times more accurate than a matrix model that connects all proteins (Bader & Hogue, 
2002). For a list of PPIN repositories online see the various literature (Cusick et al., 2009; Sanderson, 
2009). 

7   Statistical Modeling of PPI Networks 

A PPI network is typically represented as a graph, where the nodes are proteins and the edges are 
interactions between proteins in a network. Undirected edges connecting nodes are often used as a model 
for physical interactions, such that if protein A interacts with B, then B interacts with A. The observed 
experimental data, however, often display asymmetry: protein A may identify protein B as an interactor 
when A is used as a prey, but using B as a prey may not detect A. The number of edges connecting a 
node in an undirected graph is the degree of the node. To represent asymmetric data, one could also use a 
directed graph model for representing the observed data (Gentleman & Huber, 2007). Several graph 
statistical models have been used for explaining the connectivities (degree distributions) of PPINs and 
have made an impact on our understanding of biological networks: 

• the Erdos-Renyi model of random graphs,  

• scale-free networks following a power law,  

• hierarchical modularity (Ravasz et al., 2002; Goldberg et al., 2006). 

A statistical model for PPI networks is required for top-down systems biology approaches. Top-down 
models in systems biology are used for generating hypotheses. An example of top-down systems biology 
is to analyze a large-scale dataset to find correlations between genes and proteins in an organism’s 
interactome. Top-down approaches can use a general statistical model of the interactome to find 
correlated molecular behavior in genome-wide studies. However, wet lab experiments cannot be 
designed and justified based on top-down results alone. Bottom-up systems biology approaches examine 
the mechanisms of interaction between known components through which functions arise. Bottom-up 
approaches build detailed models on a particular mechanism that can be simulated computationally. 
Hypotheses can be integrated into bottom-up models followed by experimental validation in the lab. The 
experimental data can then be fed back into the top-down approach iteratively to refine the general model 
used to formulate hypotheses on new molecular mechanisms. This computationally driven experimental 
biology is relevant to the study of any complex cellular system, such as the development of cancer. 
However, integrating hypotheses in bottom-up models for verification assumes experimental methods 
have a low noise rate (Bruggeman & Westerhoff, 2007). 

7.1   Random Graphs 

A random graph is defined as a fixed number of nodes (proteins), with an edge (interaction) existing be-
tween any pair of nodes with independent probability, as Figure 2 shows. In a random graph, the proba- 
 
 



 
 

Figure 2: In the Erdos-Renyi model of a random graph, every possible edge occurs with in-
dependent probability. 

 
bility that a node has degree k follows the Poisson distribution f (k | !) = e-! !k / k!, where ! is the mean  
degree. The degree distribution is a function, often visualized as a histogram (Goldberg et al., 2007; 
Chakrabarti & Faloutsos, 2006). 

7.2   Scale-free Networks Produced by the Power Law 

The degree distribution of a scale-free network follows the power law P(k) = ck 
-", where P(k) is the frac-

tion of nodes in the network having k connections to other nodes, c is a constant and " is a constant with a 
value in the range 2 < " < 3. In a scale-free network the nodes do not fall into two separate classes corre-
sponding to hubs vs. low-degree nodes, but every degree appears with a frequency given by P(k). This 
appears as a straight line on a logarithmic plot (Albert, 2005). Low-degree nodes have the highest fre-
quencies and appear most often, while few high-degree nodes (hub proteins) occur (Chakrabarti & Fa-
loutsos, 2006). Figure 3 shows an example of power law distribution. 

The origin of the scale-free topology in complex networks can be reduced to two basic mecha-
nisms: growth and preferential attachment. Growth means that the network emerges through the subse-
quent addition of new nodes. Preferential attachment means that new nodes prefer to link to more con-
nected nodes. Growth and preferential attachment generate hubs through a ‘rich-gets-richer’ mechanism: 
the more connected a node is, the more likely it is that new nodes will link to it, which allows the highly 
connected nodes to acquire new links faster than their less connected nodes. In PPI networks, scale-free 
topology seems to have its origin in gene duplication. This induces growth in the PPIN because an extra 
gene that encodes a new protein has the same structure as the original duplicated protein, so they both 
interact with the same proteins. Ultimately, the proteins that interacted with the original duplicated pro-
tein will each gain a new interaction to the new protein. Therefore, proteins with more interactions tend 
to gain links more often, as it is more likely that they will interact with the duplicated protein (Ravasz et 
al., 2002; Lima-Mendez & van Helden, 2009). 

7.3   Hierarchical Modularity in Networks 

Barabasi et al. combined the notion of modularity in PPINs with a scale-free network, having a degree 
distribution following a power law. They proposed a network structure referred to as hierarchical modu- 



 
 

 
Figure 3: To demonstrate a power law we extracted the unique words in the novel Moby Dick 
by Herman Melville. We associated with every word a number of edges, representing a word’s 
occurrences in the novel. The plot shows the degree distribution on a log-log scale for the 
unique words’ occurrences in the novel. The continuously decreasing degree distribution shows 
that low-degree nodes (words occurring a few times) are common (adapted from Clauset et al., 
2009; Chakrabarti & Faloutsos 2006). In other words, the plot shows that most words occur a 
few times in the entire novel, but there are a few words that occur repeatedly. 

 
 
 
larity. A hierarchical organization, as shown in Figure 4, was proposed as the cause of scale-freeness and 
a high degree of clustering in networks (Ravasz et al., 2002). They showed that the PPINs of 43 organ-
isms are organized into distinct highly connected modules. The modules combine in a hierarchical man-
ner into larger units, such that their connectivity and degree of clustering follow a power law (a scale-free 
topology). This hierarchical network architecture has been considered an organizing principle of complex 
networks (Clauset et al., 2008). 

8    Network Motifs and Modules 

Network motifs are patterns (sub-graphs) that recur within a network more often than expected by 
chance. Most networks studied in biology, including PPI networks, seem to be largely composed of a 
small set of network motifs, which occur repeatedly. Alon et al. presented the idea of network motifs 
after discovering motifs in the gene regulation (transcription) network of the bacteria E. coli (Alon, 2007; 
Shen-Orr et al., 2002). These motifs can be considered as simple building blocks from which the network 
is composed. 

Motifs in PPI networks often result from interactions of proteins in complexes. The abundance of 
network motifs is partly explained by the enrichment in protein complexes (Albert, 2005; Ma’ayan et al., 
2009). The membership of proteins in complexes can be represented with the graph theoretical notion of 
a bipartite graph or biclique (Andreopoulos et al., 2007; Gentleman & Huber, 2007). Morrison et al. pro 



 
 

 

Figure 4: A network with hierarchical modularity. The nodes are organized in groups of 
small, highly connected modules. For instance, the group of four red nodes shown in the center 
are connected with solid lines. The modules are then connected in a hierarchical manner into 
larger units, like the red and blue node groups shown as connected with dashed lines. These 
are in turn connected to similar node groups via dotted lines. Their connectivity and degree of 
clustering follow a power law (adapted from Ravasz et al. 2002).  

 
posed the lock-and-key model where PPIs are explained by an underlying interaction between comple-
mentary structural domains, which leads to modelling complexes as bicliques. They showed their ap-
proach could identify bicliques that correspond to known interaction motifs and predict novel biological-
ly relevant motifs (Morrison et al., 2006). Figure 5a shows a biclique, while 5b shows a clique where 
every node is connected to all other nodes (Chakrabarti & Faloutsos, 2006). 

Network motifs are evolutionarily conserved (Wuchty et al., 2006; Giot et al., 2003). Motifs may 
be produced by convergent evolution of genes, whereby two genes that have similar functions stem from 
a common-ancestor gene (Alon, 2007). Another cause of motifs is module duplication by evolution. Pe-
reira-Leal et al. observed that at least 20% of complexes in yeast have strong similarity to complexes in 
other organisms. These complexes may have evolved by duplication retaining the same function as the 
original complex (Pereira-Leal & Teichmann, 2005). 

Triangle motifs are abundant in signal transduction and regulatory networks (Ma'ayan, 2009). 
Zhang et al. integrated multiple interaction types in yeast, including PPIs, genetic interactions, transcrip-
tional regulation, sequence homology, and expression correlation. Then, they examined triangle motifs 
combining interactions of different types. They proposed that network motifs are signatures of higher- 



 

Set 1              Set 2 

 
(a) Bipartite core    (b) Clique 

 

Figure 5: Indicators of community structure: (a) A 4x3 bipartite core, or biclique, where each 
node in Set 1 is connected to each node in Set 2. (b) A 5-node clique, where every node is 
connected to all other nodes. 

 
 
order network structures that correspond to biological phenomena. For example, a network motif may 
represent two targets of the same transcription factor bridged by a PPI. 

Triangle motifs are abundant in signal transduction and regulatory networks (Ma'ayan, 2009). 
Zhang et al. integrated multiple interaction types in yeast, including PPIs, genetic interactions, transcrip-
tional regulation, sequence homology, and expression correlation. Then, they examined triangle motifs
combining interactions of different types. They proposed that network motifs are signatures of higher-
order network structures that correspond to biological phenomena. For example, a network motif may 
represent two targets of the same transcription factor bridged by a PPI. 

According to Newman (2006), modularity can be formulated mathematically in PPI networks as 
the number of edges within groups of proteins minus the number expected in a PPI network of the same 
size with edges placed at random. Spirin & Mirny (2003) found a high frequency of modules in PPINs, 
where modules are groups of proteins densely connected internally, but sparsely connected with the rest 
of the network. This would imply few edges connecting different modules. They found a high frequency 
of protein complexes manifested as modules, such as splicing machinery, transcription factors, etc. These 
modules are statistically significant when compared to random graphs and are robust to noise, suggesting 
that such modules constitute PPIN building blocks. Tamames et al. (2007) and Wang & Zhang (2007) 
argued that PPIN modularity is correlated with the process of reductive evolution, where most of the an-
cestral genes are lost while other network properties remain unchanged. 

9    Finding Protein Complexes 

Protein complexes are groups of proteins that interact in the cell at the same time and location. Several 
approaches used clustering or graph theoretic methods to predict protein complexes in PPI networks by 
identifying tightly interacting groups of proteins (Andreopoulos et al., 2009; Lubovac et al., 2006; Altaf-
Ul-Amin et al., 2006). An early work on identifying protein complexes involved an application of the k-



cores algorithm by Bader et al. (Bader & Hogue, 2003; Batagelj & Zavernik, 2001). The k-core is 

computed by pruning all the nodes and their respective edges with degree (number of edges) less than k. 
That means that if a node u has degree m and it has n neighbors with degree less than k, then u's degree 
becomes m – n and it will be also pruned if k > m – n. As example, consider a cluster of low-degree 

proteins {A, B, C} that is a 2-core or 3-core, but not a 4-core, because A and B have three edges only; k-
cores with k = 4 cannot find this cluster. 

Andreopoulos et al. (2007) proposed the MULIC clustering algorithm, which finds bicliques in 
PPI networks. In the example above, MULIC can find the cluster {A, B, C} if all three proteins {A, B, C} 
interact with the same protein partners. MULIC detects such proteins as local interaction partners 
(mediators) that mediate a module of proteins. Mediator proteins and modules are significantly enriched 
in gene ontology (GO) annotations, including known functions, cellular processes and locations.  

Methods for predicting interactions and complexes in PPI networks may involve finding protein 
domains believed to interact (Albrecht et al., 2005). Several articles have appeared on predicting PPIs 
based on their binding sites (Deng et al., 2002; Kim et al., 2002; Sprinzak & Margalit, 2001). These 

methods generally evaluate a statistical score for the probability of two domains interacting. These scores 
suggest which protein pairs are most likely to interact; then it is deduced that other protein pairs with 
these domains are likely to interact. Similarly, Morrison et al. (2006) and Li et al. (2006) identified 
bipartite subgraphs in networks, which arise from structural domain–domain interactions.  

Methods for finding functional modules in PPINs often use the connectivity of nodes to find dense 
areas (Chen & Yuan, 2006; Espadaler et al., 2005; Pereira-Leal et al., 2004; Spirin & Mirny, 2003). 

Some methods predict functional modules based on how many common interaction partners two proteins 
share (Morrison et al., 2006; Andreopoulos et al., 2007; Andreopoulos et al., 2009; Chua et al., 2006; 
Okada et al., 2005; Samanta & Liang, 2003). Ding et al. (2004) represented PPINs based on an 
underlying bipartite graph model that allows generating the complex-complex association network. This 
representation allows viewing the network as consisting of protein complexes that share components.  

Dunn et al. (2005) described separating PPINs into clusters of interconnected proteins, using Girvan and 
Newman's Edge-Betweenness algorithm (Girvan & Newman, 2002). The detected clusters are enriched in 
gene ontology (GO) annotations.  

Other approaches detect protein complexes on the basis of probabilistic methods. Sharan et al. 
developed a probabilistic model for protein complexes, based on conservation between the yeast S. 
cerevisiae and the bacteria H. pylori. They used this model for finding conserved complexes by searching 
for heavy subgraphs in an edge- and node-weighted graph, whose nodes are orthologous protein pairs 
between two species (Sharan & Ideker et al., 2005; Sharan et al., 2005). Dittrich et al. found maximal 
scoring subnetworks in large PPINs using scalable methods from operations research. They integrated 
datasets, such as lymphoma microarray data with a large PPIN from the Human Protein Reference 
Database (HPRD) (Marcus et al., 2008). Liu et al. assigned weights to proteins, such that the weight 
indicates the reliability of the protein-protein interaction. They then proposed a complex prediction 
algorithm that generates all maximal cliques from the PPIN. This method favors larger clusters, and is 
robust to random noise as it reduces the impact of unreliable interactions on complex prediction (Wong 
& Chua, 2009). 

 



10    Network Noise and Finding Errors 

Several papers aim to find errors in PPI networks by completing them for missing edges or finding false 
positives (Yu & Fotouhi, 2006; Valencia & Pazos, 2002; von Mering et al., 2007; Ben-Hur & Noble, 
2005; Guo et al., 2008). The approach of Andreopoulos et al. (2009) integrates structural information 
with PPI networks to identify triangle motifs (Andreopoulos et al., 2009). Figure 6 illustrates this 
approach. PPIs are integrated with complementary datatypes, in particular structural domain-domain 
interactions (SDDIs), in order to identify triangle motifs representing subnetworks of common 
functionality and cellular location. The triangles consisting of PPIs and SDDIs at the structural level 
allow predicting complexes and finding errors in a PPI network. The success of the approach is evaluated 
by comparing the triangle motifs with known MIPS complexes, resulting in a significant overlap (Mewes 
et al., 2006). 

Several studies collected ensembles of data, such as structural or literature information. Alber et 
al. (2007) collected diverse high-quality data, and analyzed the ensemble to produce a detailed 
architectural map of a specific protein complex. This work translates the data into spatial restraints, 
instead of using network motifs. Ramirez et al. (2007) assessed the quality and value of publically 
available human protein network data, by comparing predicted datasets, high-throughput results from 
yeast two-hybrid screens, and literature-curated protein-protein interactions. This analysis revealed major 
differences between datasets. Rhodes et al. (2005) demonstrated a probabilistic analysis integrating 
model organism protein interactomes, structural domain data, genome-wide gene expression data and 
functional annotations that predicted nearly 40,000 human interactions. Bader et al. (2004) performed an 
integrated analysis of proteomics data with data from genetics and gene expression. Huang et al. (2004) 
presented POINT, the “prediction of interactome database”. POINT predicts sets of interacting human 
proteins by integrating several publicly accessible databases, such as mouse, fruit fly, worm and yeast. 

Another large body of work attempts to predict the missing interactions or assign confidences to 
large noisy interactomes. Some of these use network topology and others use information on structural 
domain-domain interactions, while others use Bayesian networks or probabilistic measures. Yu et al. 
(2006) described predicting missing PPIs using only the PPI network topology as observed by a high-
throughput experiment. The method searches the interactome for defective cliques, nearly complete 
complexes of pairwise interacting proteins, and predicts the interactions that complete them. Chen et al. 
(2008) proposed using triangles of observed PPIs to predict and validate interactions. Yeast is the only 
data set large enough to warrant application of this method. Singhal & Resat (2007) presented 
DomainGA, a computational approach that uses information about structural domain-domain interactions 
to predict PPIs. This method achieves good prediction for the positive and negative PPIs in yeast. Pitre et 
al. (2006) presented PIPE, a system for predicting PPIs for any target pair of the yeast proteins from their 
primary structure. Chen et al. (2006) introduced a novel measure called IRAP, "interaction reliability by 
alternative path", for assessing the reliability of PPIs based on the underlying PPI network topology. 
IRAP measure is effective for discovering reliable PPIs in large noisy PPI networks. Ng et al. (2003) 
proposed an integrative approach that applies structural domain-domain interactions to predict and 
validate PPIs. Chen & Liu (2005) introduced a random forest of decision trees that is capable of 
predicting PPIs based on known structural domain-domain interactions. Wu et al. (2006) proposed using 
the similarity between pairs of gene ontology (GO) terms for reconstructing a yeast PPI network based on 
knowledge of functional associations between the GO annotations. 



 
 

Figure 6: The approach of Andreopoulos et al. (2009) denoises networks by building 
triangles consisting of PPIs and complementary datatypes. It starts by extracting the second-
level neighbors from a PPIN. Combining these PPI edges with structural domain-domain 
interactions (SDDIs, or any other complementary data type) allows building triangle motifs. 
Then, the triangle motifs are compared with known complexes such as MIPS (Mewes et al., 
2006; Andreopoulos et al., 2009). 
 
 



Jansen et al. (2003) developed an approach using Bayesian networks to predict PPIs in yeast. Han 
et al. (2004) proposed PreSPI, a domain combination based PPI prediction approach. PPIs are interpreted 
as the result of groups of multiple structural domain-domain interactions. This approach also provides an 
interacting probability for PPIs. Vidal and colleagues used reference sets to calculate the probability that 
a newly identified PPI is a true biophysical interaction, and assigned confidence scores to all PPIs in 
interactome networks (Braun, 2009). Yu et al. (2009) assigned confidence scores that reflect the 
reliability of each PPI, by using multiple independent sets of training positives to reduce the bias inherent 
in using a single training set.  

Another body of work has performed large scale analysis of networks, statistical network motif 
analysis or error estimation. Jin et al. (2007) used network motifs to solve the open question about 'party 
hubs' and 'date hubs' which was raised by previous studies. At the level of network motifs instead of 
individual proteins, they found two types of hubs, motif party hubs and motif date hubs, whose network 
motifs display distinct characteristics on biological functions. Zhang et al. (2005) observed that different 
types of networks exhibit different triangle profiles, providing a means for network classification. They 
extended the network triangle concept to an integrated network of many interaction types. Mathivanan et 
al. (2006) analyzed the major publically available databases that contain literature-curated PPI 
information for human proteins, finding a large difference in their content. This included public databases 
such as BIND, DIP, HPRD, IntAct, MINT, MIPS, PDZBase and Reactome (Galperin & Cochrane, 
2009). Chiang et al. (2007) assessed error statistics in all published large-scale datasets for S. cerevisiae.  

Collins et al. attempted to deal with the noise and false positives in the yeast PPIN derived from 
high-throughput AP-MS studies (Krogan et al., 2006). They proposed a novel probabilistic metric that 
takes advantage of the density of high-throughput datasets to provide a measure of the confidence of each 
PPI. This way, they keep a subset of PPIs that are of higher confidence in BioGRID. 

11    Human PPI Networks 

A great challenge in the post-genomic era is to construct a complete human PPI network for the more 
than 20,000 human genes, many of which remain uncharacterized at the moment. Current coverage of the 
human PPI network is estimated to be around 8-10%, including ~50,000-57,000 binary PPIs (Sanderson, 
2009). 

Gandhi et al. (2006) constructed one of the first integrated human PPI networks by combining 
HPRD with BIND, DIP, MIPS, MINT and IntAct. Of more than 70,000 human PPIs, only 42 were com-
mon to human, worm and fly. Only 16 were common to human, worm, fly and yeast.  

Rual et al. (2005) presented a high-throughput yeast two hybrid system that screened ~8,100 hu-
man open reading frames and detects ~2,800 interactions. This is an initial version of a human binary 
PPIN. The authors reported that more than 85% of the interactions are not found in PubMed or Google 
Scholar literature databases, indicating that the interactions are likely to be novel. 

Previously noise and low coverage was a great problem in constructing human PPINs. Mathivanan 
et al. (2006) showed that overlap between human PPIs is low despite the presence of the same proteins, 
and this is true even for databases with similar datatypes, such as literature-derived databases. Moreover, 
the PPIs that overlap between databases often have dissimilar annotations. 



Rhodes et al. (2005) proposed a bioinformatics method to predict nearly 40,000 PPIs in human. 
For this purpose, they integrated model organism PPIs (S. cerevisiae, D. melanogaster, C. elegans) with 
protein domain data and gene expression data. They validated the predicted PPIs on a test dataset to show 
a high overlap with known human PPIs.  

Especially challenging is the unravelling of PPIs between membrane proteins in humans, as well 
as extracellular PPIs. Methods such as yeast two-hybrid are not ideal for human PPI networks. A range of 
two-hybrid methods that can analyze membrane protein and extracellular PPIs have emerged. A robust 
approach for finding PPIs in membrane proteins is the Membrane Yeast Two Hybrid (MYTH) system, 
and for extracellular PPIs the AVEXIS system (Sanderson, 2009; Venkatesan et al., 2009; Cusick et al., 
2009). 

 

12   Visualization of Biological Networks 

We give a brief overview of several visualization tools for biological networks. Cytoscape is a popular 
open source network visualization tool, which allows the user to see the relationships between nodes and 
interact with them in a user-friendly manner (Shannon et al., 2003; Merico et al. 2009). It supports de-
velopment of additional plugins for special purposes (Royer et al., 2008). Cytoscape can also be used for 
combining a PPI network with the results of gene expression profiling for genes of interest (Cline et al., 
2007). 

Tool 
Open 

Source 
Accepts 
Plugins 

Mixed 
Datatypes 

Clustering 
Standard PPI Data 
Standards as Input 

Cytoscape yes yes yes yes SBML, BioPAX 
Osprey no no yes no no 

Power Graphs no no yes yes no 
Arena 3D no no yes yes no 

BioLayout Express3D no no yes yes Owl, GraphML, sif, matrix 
JClust no yes yes yes no 

NAViGaTOR no no yes no PSI-MI, BioPAX 

Table 2: A comparison of different visualization tools for biological networks. Cytoscape sup-
ports several standards for representing biological pathways, including BioPAX and SBML. Bi-
oPAX is an ontology for representing pathway knowledge (PPIs, metabolic, signaling, gene reg-
ulatory pathways), which is used as a data exchange format for biological pathways. SBML is 
an XML-based format, which is the standard for representing computational models in systems 
biology today. SBML consists of entities that are acted upon by processes (called reactions). Bi-
oCyc contains predicted pathway models for more than 200 organisms in a variety of formats, 
including SBML and BioPAX. The PSI-MI molecular interaction format is a standard for repre-
senting protein interaction data, which is aimed at integrating data from different databases. 



       Osprey builds graphical representations that are color-coded for gene function and experimental 
PPI data. Rapid elaboration and organization of network diagrams in a spoke model format can be 
achieved via a user-friendly interface (Breitkreutz et al., 2003). 

Power graphs aim to reduce network complexity by representing a biclique in PPI networks as a 
single collapsed edge. Power graphs compress up to 90% of the edges in biological networks and are ap-
plicable to all types of networks, such as protein interaction, regulatory networks, or homology networks 
(Royer et al., 2008).  

Arena3D introduces a new concept of staggered layers in 3D space. Related data – such as pro-
teins, chemicals, or pathways – can be grouped onto separate layers and arranged via numerous layout 
algorithms. Data on a layer can be clustered via different algorithms, such as the k-means procedure, af-
finity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-
group method with arithmetic mean') (Pavlopoulos & O'Donoghue et al., 2008; Pavlopoulos et al., 2008).  

BioLayout Express3D is a tool for layout, visualization and clustering of large scale networks. In 
the latest version, the Markov Clustering algorithm (MCL) has become an integral part of BioLayout 
Express3D for clustering analysis (Freeman et al., 2007).  

JClust and Medusa are open source visualization tools that support several cluster analysis algo-
rithms (MCL, MULIC, spectral, RNSC) (Pavlopoulos et al., 2009). NAViGaTOR supports community-
developed data formats (PSI-XML, BioPax and GML) (Brown et al., 2009). 

13    Applications in Biomedicine and Drug Discovery 

PPI networks are used in biomedicine to unravel the molecular basis of disease by studying disease-
related subnetworks. PPI networks offer new opportunities for drug research and development. Mole-
cules rarely work alone but rather form part of a series of connected networks, signaling pathways and 
interactions. Researchers believe that drug development calls for a broader view, which comprehends the 
properties of the complex systems responsible for the regulation of biological processes (Wu & Stein, 
2010; Taylor et al., 2009). 

Regarding the metabolic pathways of infections and cancer diseases, the use and increase of 
knowledge gathered by using PPI networks showed promising results over the last few years (Guda et al., 
2009, Chuang et al., 2007, Goh et al., 2007). The main goal of these networks is the determination of 
substances that are able to suppress or activate certain interactions that are associated with immune re-
sponse functionality (Rambaldi et al., 2008; Jonsson & Bates, 2006). 

For instance, the correlation between the infection with the pathogenic bacterium Heliobacter py-
lori (H. pylori) and the occurrence of various gastro duodenal diseases has been examined in a new way 
using PPI networks. H. pylori infects about 50% of the world population. It is known to cause diseases 
such as chronic active gastritis in experimental animals and in humans. Many scholars have demonstrated 
a relationship between H. pylori and gastric carcinoma, and the World Health Organization (WHO) and 
the International Agency for Research on Cancer consensus group have classified H. pylori as a definite 
biological carcinogen (Kim & Kim, 2009). 

To examine this correlation by using PPINs, the change of gene-expression during H. pylori infec-
tion was scanned from online literature databases and translated into proteins. A PPIN was constructed 
by searching the primary interactions of selected proteins. The constructed PPIN was mathematically 



analyzed and its biological function was examined. In addition, the nodes on the network were extended 
by determining if they had any further functional importance or relation to other proteins. Mathematical 
analysis of this network showed hub and bottleneck proteins mostly related to immune response. These 
immune-related proteins interacted on the network with pathways and proteins related to the cell cycle, 
cell maintenance and proliferation, and transcription regulators. The extension of nodes showed interac-
tions of the immune proteins with cancer related oncogenic proteins. As a result of this study, the detect-
ed hub and bottleneck proteins are potential drug targets for gastric inflammation and cancer (Kim & 
Kim, 2009).  

By extending PPINs with other sources of information, such as gene co-expression, protein do-
main interaction, gene ontology annotations and text-mined protein interactions, multiple pattern simi-
larities were found and gave a new insight into the outcome of several diseases (Srinivasan et al., 2007). 
For example, such an extended PPIN was applied to two glioblastoma (GBM) datasets and candidate 
oncogenes were projected onto this network. The majorities of GBM candidate oncogenes formed a clus-
ter and were closer than expected by chance. Network modules with sequence mutations were enriched in 
known oncogenes, tumor suppressors and signal transduction genes. Similar PPIN patterns were found in 
breast, colorectal and pancreatic cancers (Pujol et al., 2009; Wu & Stein, 2010; Cerami et al., 2010). 

14    Conclusion 

This article gave an overview of approaches to analyzing protein-protein interaction networks, as well as 
uses of PPI networks in biomedical and biological research. PPI networks are prominent in recent efforts 
to understand the molecular basis of diseases, such as cancer. PPI networks show promise to help deci-
pher cell signaling, which will provide essential information in finding drug targets and curing diseases 
(Pujol et al., 2009). Important problems still remain open, such as the high level of noise and incon-
sistency between PPI networks from different experimental studies. One criticism is that PPI networks 
are often static, as they do not show the dynamic changes in the cellular state over time (Srinivasan et al., 
2007). Since PPI networks provide only one viewpoint of the cell, integration with other data types is 
necessary to get a more complete picture of cellular events (Bapat et al., 2010). Analysis tools, such as 
Cytoscape, are taking steps towards an integrated interpretation of PPI networks with other data types 
(Merico et al., 2009). 
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